Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.401
Filtrar
1.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540331

RESUMO

Despite extensive research over the last few decades, the etiology of schizophrenia (SZ) remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the lifestyle and minds of those affected. Several factors (one or in combination) have been reported as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification (PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After establishing a summary of epigenetic processes in the context of schizophrenia, this review aims to highlight the current understanding of the role of DNA methylation and histone PTMs in this disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.


Assuntos
Histonas , Esquizofrenia , Humanos , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Esquizofrenia/metabolismo , Epigênese Genética , Processamento de Proteína Pós-Traducional/genética , Metilação
2.
Front Biosci (Landmark Ed) ; 29(3): 126, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538276

RESUMO

Genetic information in eukaryotic organisms is stored, replicated, transcribed, and inherited through the nucleus of a cell. Epigenetic modifications in the genetic material, including DNA methylation, histone modification, changes in non-coding RNA (ncRNA) biogenesis, and chromatin architecture play important roles in determining the genomic landscape and regulating gene expression. Genome architecture (structural features of chromatin, affected by epigenetic modifications) is a major driver of genomic functions/activities. Segregation of euchromatin (transcriptionally active) from heterochromatin (transcriptionally repressed chromosome) and positioning of genes in specific nuclear space in eukaryotic cells emphasise non-randomness in the organization of the genetic information. Not only does the base sequence of a gene carry the genetic information but the covalent modifications of bases, three-dimensional positioning of the genome, and chromatin loops are vital for switching on/off the gene and regulating its expression during growth/environmental stress. The epigenetic dynamics depend on the activities of writers and erasers under changing environmental conditions. The discovery of non-coding RNAs (one of the players in de novo methylation of DNA), increased DNA methylation protein (guide for the DNA demethylase), and methylation monitoring sequence (that helps keep a balance between DNA demethylation and methylation) have been some of the new developments in the era of epigenomics. To respond to environmental stimuli, plants depend on modulating gene expression through different mechanisms including biochemical, molecular, genetic, and epigenetic alterations. Studies on plants might provide better insights into epigenetic stress memory and molecular bases of adaptability to enable (epi)genome editing of crops for climate resilience and sustainable agriculture in the present era of multifaceted climate change.


Assuntos
Metilação de DNA , Epigênese Genética , Cromatina/genética , DNA , Processamento de Proteína Pós-Traducional/genética
3.
Signal Transduct Target Ther ; 9(1): 60, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485938

RESUMO

Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.


Assuntos
Metabolismo dos Lipídeos , Proteínas , Metabolismo dos Lipídeos/genética , Proteínas/química , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais , Lipídeos
4.
J Cell Biochem ; 125(3): e30523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239037

RESUMO

Parkinson's disease (PD) is among the most prevalent neurodegenerative disorders, affecting over 10 million people worldwide. The protein encoded by the SNCA gene, alpha-synuclein (ASYN), is the major component of Lewy body (LB) aggregates, a histopathological hallmark of PD. Mutations and posttranslational modifications (PTMs) in ASYN are known to influence protein aggregation and LB formation, possibly playing a crucial role in PD pathogenesis. In this work, we applied computational methods to characterize the effects of missense mutations and PTMs on the structure and function of ASYN. Missense mutations in ASYN were compiled from the literature/databases and underwent a comprehensive predictive analysis. Phosphorylation and SUMOylation sites of ASYN were retrieved from databases and predicted by algorithms. ConSurf was used to estimate the evolutionary conservation of ASYN amino acids. Molecular dynamics (MD) simulations of ASYN wild-type and variants A30G, A30P, A53T, and G51D were performed using the GROMACS package. Seventy-seven missense mutations in ASYN were compiled. Although most mutations were not predicted to affect ASYN stability, aggregation propensity, amyloid formation, and chaperone binding, the analyzed mutations received relatively high rates of deleterious predictions and predominantly occurred at evolutionarily conserved sites within the protein. Moreover, our predictive analyses suggested that the following mutations may be possibly harmful to ASYN and, consequently, potential targets for future investigation: K6N, T22I, K34E, G36R, G36S, V37F, L38P, G41D, and K102E. The MD analyses pointed to remarkable flexibility and essential dynamics alterations at nearly all domains of the studied variants, which could lead to impaired contact between NAC and the C-terminal domain triggering protein aggregation. These alterations may have functional implications for ASYN and provide important insight into the molecular mechanism of PD, supporting the design of future biomedical research and improvements in existing therapies for the disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Processamento de Proteína Pós-Traducional/genética , Mutação
5.
Mol Biol Rep ; 51(1): 3, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063905

RESUMO

Autophagy is a process that is characterized by the destruction of redundant components and the removal of dysfunctional ones to maintain cellular homeostasis. Autophagy dysregulation has been linked to various illnesses, such as neurodegenerative disorders and cancer. The precise transcription of the genes involved in autophagy is regulated by a network of epigenetic factors. This includes histone modifications and histone-modifying enzymes. Epigenetics is a broad category of heritable, reversible changes in gene expression that do not include changes to DNA sequences, such as chromatin remodeling, histone modifications, and DNA methylation. In addition to affecting the genes that are involved in autophagy, the epigenetic machinery can also alter the signals that control this process. In cancer, autophagy plays a dual role by preventing the development of tumors on one hand and this process may suppress tumor progression. This may be the control of an oncogene that prevents autophagy while, conversely, tumor suppression may promote it. The development of new therapeutic strategies for autophagy-related disorders could be initiated by gaining a deeper understanding of its intricate regulatory framework. There is evidence showing that certain machineries and regulators of autophagy are affected by post-translational and epigenetic modifications, which can lead to alterations in the levels of autophagy and these changes can then trigger disease or affect the therapeutic efficacy of drugs. The goal of this review is to identify the regulatory pathways associated with post-translational and epigenetic modifications of different proteins in autophagy which may be the therapeutic targets shortly.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Metilação de DNA/genética , Epigênese Genética/genética , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Autofagia/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38050059

RESUMO

TP53 plays a critical role as a tumor suppressor by controlling cell cycle progression, DNA repair, and apoptosis. Post-translational modifications such as acetylation of specific lysine residues in the DNA binding and carboxy-terminus regulatory domains modulate its tumor suppressor activities. In this study, we addressed the functional consequences of the germline TP53 p.K164E (NM_000546.5: c.490A>G) variant identified in a patient with early-onset breast cancer and a significant family history of cancer. K164 is a conserved residue located in the L2 loop of the p53 DNA binding domain that is post-translationally modified by acetylation. In silico, in vitro, and in vivo analyses demonstrated that the glutamate substitution at K164 marginally destabilizes the p53 protein structure but significantly impairs sequence-specific DNA binding, transactivation, and tumor cell growth inhibition. Although p.K164E is currently considered a variant of unknown significance by different clinical genetic testing laboratories, the clinical and laboratory-based findings presented here provide strong evidence to reclassify TP53 p.K164E as a likely pathogenic variant.


Assuntos
Mutação em Linhagem Germinativa , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Mutação em Linhagem Germinativa/genética , Processamento de Proteína Pós-Traducional/genética , DNA/metabolismo , Células Germinativas/metabolismo
7.
Signal Transduct Target Ther ; 8(1): 449, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072908

RESUMO

Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.


Assuntos
Antineoplásicos , Ferroptose , Nefropatias , Pneumopatias , Neoplasias , Humanos , Ferroptose/genética , Processamento de Proteína Pós-Traducional/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Metilação de DNA , Epigênese Genética/genética , Antineoplásicos/uso terapêutico , Pneumopatias/tratamento farmacológico , Pneumopatias/genética
8.
Lipids Health Dis ; 22(1): 196, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964368

RESUMO

Lipin family members in mammals include lipins 1, 2, and 3. Lipin family proteins play a crucial role in lipid metabolism due to their bifunctionality as both transcriptional coregulators and phosphatidate phosphatase (PAP) enzymes. In this review, we discuss the structural features, expression patterns, and pathophysiologic functions of lipins, emphasizing their direct as well as indirect roles in cardiovascular diseases (CVDs). Elucidating the regulation of lipins facilitates a deeper understanding of the roles of lipins in the processes underlying CVDs. The activity of lipins is modulated at various levels, e.g., in the form of the transcription of genes, post-translational modifications, and subcellular protein localization. Because lipin characteristics are undergoing progressive clarification, further research is necessitated to then actuate the investigation of lipins as viable therapeutic targets in CVDs.


Assuntos
Doenças Cardiovasculares , Animais , Humanos , Doenças Cardiovasculares/genética , Compostos Orgânicos/metabolismo , Metabolismo dos Lipídeos/genética , Processamento de Proteína Pós-Traducional/genética , Fosfatidato Fosfatase/genética , Mamíferos/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(47): e2311249120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963248

RESUMO

Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.


Assuntos
Histonas , Neurospora crassa , Histonas/genética , Histonas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Metilação de DNA/genética , Processamento de Proteína Pós-Traducional/genética , DNA/metabolismo , Citosina/metabolismo
10.
Annu Rev Cell Dev Biol ; 39: 331-361, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843925

RESUMO

Microtubules are essential dynamic polymers composed of α/ß-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and ß-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Movimento Celular
11.
Expert Rev Proteomics ; 20(12): 345-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37873978

RESUMO

INTRODUCTION: Cancer is a disease of (altered) biological pathways, often driven by somatic mutations and with several implications. Therefore, the identification of potential markers of disease is challenging. Given the large amount of biological data generated with omics approaches, oncology has experienced significant contributions. Proteomics mapping of protein fragments, derived from proteolytic processing events during oncogenesis, may shed light on (i) the role of active proteases and (ii) the functional implications of processed substrates in biological signaling circuits. Both outcomes have the potential for predicting diagnosis/prognosis in diseases like cancer. Therefore, understanding proteolytic processing events and their downstream implications may contribute to advances in the understanding of tumor biology and targeted therapies in precision medicine. AREAS COVERED: Proteolytic events associated with some hallmarks of cancer (cell migration and proliferation, angiogenesis, metastasis, as well as extracellular matrix degradation) will be discussed. Moreover, biomarker discovery and the use of proteomics approaches to uncover proteolytic signaling events will also be covered. EXPERT OPINION: Proteolytic processing is an irreversible protein post-translational modification and the deconvolution of biological data resulting from the study of proteolytic signaling events may be used in both patient diagnosis/prognosis and targeted therapies in cancer.


Assuntos
Neoplasias , Peptídeo Hidrolases , Humanos , Proteólise , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas/metabolismo
12.
J Vis Exp ; (199)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782089

RESUMO

Gene expression control occurs partially by modifications in chromatin structure, including the addition and removal of posttranslational modifications to histone tails. Histone post-translational modifications (HPTMs) can either facilitate gene expression or repression. For example, acetylation of histone tail lysine residues neutralizes the positive charge and reduces interactions between the tail and negatively charged DNA. The decrease in histone tail-DNA interactions results in increased accessibility of the underlying DNA, allowing for increased transcription factor access. The acetylation mark also serves as a recognition site for bromodomain-containing transcriptional activators, together resulting in enhanced gene expression. Histone marks can be dynamically regulated during cell differentiation and in response to different cellular environments and stimuli. While next-generation sequencing approaches have begun to characterize genomic locations for individual histone modifications, only one modification can be examined concurrently. Given that there are hundreds of different HPTMs, we have developed a high throughput, quantitative measure of global HPTMs that can be used to screen histone modifications prior to conducting more extensive genome sequencing approaches. This protocol describes a flow cytometry-based method to detect global HPTMs and can be conducted using cells in culture or isolated cells from in vivo tissues. We present example data from isolated mouse brain microglia to demonstrate the sensitivity of the assay to detect global shifts in HPTMs in response to a bacteria-derived immune stimulus (lipopolysaccharide). This protocol allows for the rapid and quantitative assessment of HPTMs and can be applied to any transcriptional or epigenetic regulator that can be detected by an antibody.


Assuntos
Encéfalo , Histonas , Microglia , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Acetilação , Encéfalo/metabolismo , DNA/genética , Citometria de Fluxo , Histonas/genética , Histonas/metabolismo , Microglia/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
14.
HGG Adv ; 4(3): 100206, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333770

RESUMO

DHPS deficiency is a rare genetic disease caused by biallelic hypomorphic variants in the Deoxyhypusine synthase (DHPS) gene. The DHPS enzyme functions in mRNA translation by catalyzing the post-translational modification, and therefore activation, of eukaryotic initiation factor 5A (eIF5A). The observed clinical outcomes associated with human mutations in DHPS include developmental delay, intellectual disability, and seizures. Therefore, to increase our understanding of this rare disease, it is critical to determine the mechanisms by which mutations in DHPS alter neurodevelopment. In this study, we have generated patient-derived lymphoblast cell lines and demonstrated that human DHPS variants alter DHPS protein abundance and impair enzyme function. Moreover, we observe a shift in the abundance of the post-translationally modified forms of eIF5A; specifically, an increase in the nuclear localized acetylated form (eIF5AAcK47) and concomitant decrease in the cytoplasmic localized hypusinated form (eIF5AHYP). Generation and characterization of a mouse model with a genetic deletion of Dhps in the brain at birth shows that loss of hypusine biosynthesis impacts neuronal function due to impaired eIF5AHYP-dependent mRNA translation; this translation defect results in altered expression of proteins required for proper neuronal development and function. This study reveals new insight into the biological consequences and molecular impact of human DHPS deficiency and provides valuable information toward the goal of developing treatment strategies for this rare disease.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Fatores de Iniciação de Peptídeos , Doenças Raras , Animais , Humanos , Recém-Nascido , Camundongos , Homeostase/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética
15.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119526, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364618

RESUMO

The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.


Assuntos
Proteínas F-Box , Proteínas de Saccharomyces cerevisiae , Animais , DNA , Reparo do DNA/genética , Proteínas F-Box/genética , Mamíferos/genética , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
16.
Signal Transduct Target Ther ; 8(1): 220, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244925

RESUMO

The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.


Assuntos
Doenças Metabólicas , Processamento de Proteína Pós-Traducional , Humanos , Processamento de Proteína Pós-Traducional/genética , Fosforilação , Glicosilação , Proteoma , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética
17.
Cell Rep Methods ; 3(3): 100430, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056379

RESUMO

We present a deep-learning-based platform, MIND-S, for protein post-translational modification (PTM) predictions. MIND-S employs a multi-head attention and graph neural network and assembles a 15-fold ensemble model in a multi-label strategy to enable simultaneous prediction of multiple PTMs with high performance and computation efficiency. MIND-S also features an interpretation module, which provides the relevance of each amino acid for making the predictions and is validated with known motifs. The interpretation module also captures PTM patterns without any supervision. Furthermore, MIND-S enables examination of mutation effects on PTMs. We document a workflow, its applications to 26 types of PTMs of two datasets consisting of ∼50,000 proteins, and an example of MIND-S identifying a PTM-interrupting SNP with validation from biological data. We also include use case analyses of targeted proteins. Taken together, we have demonstrated that MIND-S is accurate, interpretable, and efficient to elucidate PTM-relevant biological processes in health and diseases.


Assuntos
Aprendizado Profundo , Humanos , Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Redes Neurais de Computação , Aminoácidos/metabolismo
18.
Nat Chem Biol ; 19(9): 1072-1081, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36997646

RESUMO

The proline-rich antimicrobial peptide (PrAMP) drosocin is produced by Drosophila species to combat bacterial infection. Unlike many PrAMPs, drosocin is O-glycosylated at threonine 11, a post-translation modification that enhances its antimicrobial activity. Here we demonstrate that the O-glycosylation not only influences cellular uptake of the peptide but also interacts with its intracellular target, the ribosome. Cryogenic electron microscopy structures of glycosylated drosocin on the ribosome at 2.0-2.8-Å resolution reveal that the peptide interferes with translation termination by binding within the polypeptide exit tunnel and trapping RF1 on the ribosome, reminiscent of that reported for the PrAMP apidaecin. The glycosylation of drosocin enables multiple interactions with U2609 of the 23S rRNA, leading to conformational changes that break the canonical base pair with A752. Collectively, our study reveals novel molecular insights into the interaction of O-glycosylated drosocin with the ribosome, which provide a structural basis for future development of this class of antimicrobials.


Assuntos
Anti-Infecciosos , Glicopeptídeos , Processamento de Proteína Pós-Traducional , Animais , Antibacterianos/química , Drosophila/metabolismo , Glicopeptídeos/química , Glicosilação , Processamento de Proteína Pós-Traducional/genética
19.
Am J Physiol Cell Physiol ; 324(3): C769-C776, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745529

RESUMO

Congenital myopathies are a vast group of genetic muscle diseases. Among the causes are mutations in the MYH2 gene resulting in truncated type IIa myosin heavy chains (MyHCs). The precise cellular and molecular mechanisms by which these mutations induce skeletal muscle symptoms remain obscure. Hence, in the present study, we aimed to explore whether such genetic defects would alter the presence as well as the post-translational modifications of MyHCs and the functionality of myosin molecules. For this, we dissected muscle fibers from four myopathic patients with MYH2 truncating mutations and from five human healthy controls. We then assessed 1) MyHCs presence/post-translational modifications using LC/MS; 2) relaxed myosin conformation and concomitant ATP consumption with a loaded Mant-ATP chase setup; 3) myosin activation with an unloaded in vitro motility assay; and 4) cellular force production with a myofiber mechanical setup. Interestingly, the type IIa MyHC with one additional acetylated lysine (Lys35-Ac) was present in the patients. This was accompanied by 1) a higher ATP demand of myosin heads in the disordered-relaxed conformation; 2) faster actomyosin kinetics; and 3) reduced muscle fiber force. Overall, our findings indicate that MYH2 truncating mutations impact myosin presence/functionality in human adult mature myofibers by disrupting the ATPase activity and actomyosin complex. These are likely important molecular pathological disturbances leading to the myopathic phenotype in patients.


Assuntos
Actomiosina , Doenças Musculares , Adulto , Humanos , Doenças Musculares/patologia , Mutação/genética , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/genética
20.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674981

RESUMO

Linker histones (LH) are a critical component of chromatin in addition to the canonical histones (H2A, H2B, H3, and H4). In humans, 11 subtypes (7 somatic and 4 germinal) of linker histones have been identified, and their diverse cellular functions in chromatin structure, DNA replication, DNA repair, transcription, and apoptosis have been explored, especially for the somatic subtypes. Delineating the unique role of human linker histone (hLH) and their subtypes is highly tedious given their high homology and overlapping expression patterns. However, recent advancements in mass spectrometry combined with HPLC have helped in identifying the post-translational modifications (PTMs) found on the different LH subtypes. However, while a number of PTMs have been identified and their potential nuclear and non-nuclear functions explored in cellular processes, there are very few studies delineating the direct relevance of these PTMs in diseases. In addition, recent whole-genome sequencing of clinical samples from cancer patients and individuals afflicted with Rahman syndrome have identified high-frequency mutations and therefore broadened the perspective of the linker histone mutations in diseases. In this review, we compile the identified PTMs of hLH subtypes, current knowledge of the relevance of hLH PTMs in human diseases, and the correlation of PTMs coinciding with mutations mapped in diseases.


Assuntos
Cromatina , Histonas , Humanos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Espectrometria de Massas , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...